i ey S e

_ AD-AOSL 072  MICHIGAN UNIV ANN ARBOR RADIATION LAB F/e 2076 ~
ﬂ-ECTRONAMTIC SCATTERING. (V)
DEC 77 1' 8 SENIOR AFOSR=77-3188 I
UNCLASSIFIED AFOSR=TR=78-0197 NL

..... L“U

_,:8




|u" 10 = he g2
— 56 32
==t = g
“m TR
ey L

L2 e

Iz
O

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDY A



A . ,,.‘
(S
M’
. -~

AD No.

ADA051072

COPYF

—n

AFOSRflR- 78-0197 £15224-1-1

‘ : : L o s
THE UNIVERSITY OF MICHIGAN

COLLEGE OF ENGINEERING
DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

‘Radiation Laboratory

ooy
* INTERIM SCIENTIFIC REPORT ~ .. - =

Grant No. 77-3188(A), 1 January - 31 December 1977

Thomas B.A. Senior

Prepared for:

d0C FILE

AIR FORCE OFFICE OF SCIENTIFIC RESEARCH

__ AFOSR/NM vy * e

Building 410 ‘
Bolling Air Force Base

Washington, D.C. 20332

APproy
dla‘rl ed fop Publie rel
bﬂtion mmt‘: 0“.‘
.

December 1977

Ann Arbor, Michigan

S



-t

Wy

(Y7 ' REPORT DOCUMENTATION PAGE

READ INSTRUCTIONS
BEFORE COMPLETING FORM

“~REPO NuuaER W— ]z % ACCESSION NO.

AFOSRTR- 78-9019% "7

3. RECIPIENT'S CATALOG NUMBER

4 TITLE (Md Sublllle)

!

ELECTROMAGNETIC bCATTERING ¢ f

S. lng OF REPORY & PERIOD COVERED
> A p

@ Interim r elo'f.

I —————

6. PERFORMING OG. REPORT NUMBER

7.

AUTHOR(s)

/[ CONTRACT OR GRANT NUMBER(s)

@Fi5224-11]

i L R
Thomas B. A/Semor

.Z; [ ‘AFGs R—77—318éw

9. PERFORMING ORGANIZATION NAME AND ADDRESS
University of Michigan

Dept of Electrical & Computer Engineering
Ann Arbor, Michigan 48109

10. PROGRAM ELEMENT, PROJECT, TASK
AREA K J NUMBERS

Sy

61102 F 23¢1./A4

11, CONTROLLING OFFICE NAME AND ADDRESS
Air Force Office of Scientific Research/NM
Bolling AFB, DC 20332

'2. REPQORT DATE

(22| Deceombsr=1977 [

B EOCTY

14 MONITORING AGENCY NAME & ADDRESS(if different from Controlling Oflice) 15. SECURITY CL s report)
UNCLASSIFIED
15a. DECLASSIFICATION/ DOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if dilferent from Report)

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse side if necessary and identify by block number)

20. ABSTRACT (Continue on reverse aide If neceasary and Identily by block number)

This interim scientific report summarizes the work carried out under the Air Force
|Office of Scientific Research Grant No 77-3188 during the year erded 3l Dec 77.

EDITION OF | NOV 65 IS OBSOLETE

DD , ok’ 1473

UNCLASSIFIED

29‘/ 2 bd SECURITY CLASSIFICATION OF THIS PAGE (When Date noE: z

g — ——
——

- e A —————

e

——




015224-1-1
ELECTROMAGNETIC SCATTERING

This interim scientific report summarizes the work carried out under the
Air Force Office of Scientific Research Grant No. 77-3188(A) during the year
ended 31 December 1977.

It has been a year of steady progress on several fronts.EMOne of the major
efforts has been in connection with the design of broadband absorbers to re-
duce the backscattering cross section of wing-like structures when illuminated
at close to edge-on incidence with magnetic vector parallel to the edge. <
Under a previous Air Force Contract it was shown that thin coatings could be
simulated using a surface impedance, and that the materials available could
produce a significant cross section reduction over broad aspect and frequency
ranges, but the time available did not permit the detailed analytical and
numerical investigation necessary to determine the maximum cross section re-
duction attainable.

Such an investigation has now been performed under the present Grant.
Using a 30° angle ogival cylinder with a maximum allowed value for the magni-
tude of the surface impedance, analyses and computations have been performed
to find the surface impedance profiles that are most effective in reducing the
backscattering cross section for H polarization, with particular reference to
an aspect range * 30° about edge-on. Analytical expressions for the fields
diffracted by the edge of a uniform impedance wedge and by a discontinuity in
the value or first derivative of an impedance on a plane surface were used to
specify the (local) surface impedance to minimize the direct scattering from
any singularity, as at the front and rear edges of the ogival cylinder. Various
trial profiles were then constructed and used in conjunction with a computer
program for the direct digital solution of the surface integral equations to
compute the resulting backscattered fields. From data obtained at a sequence
of closely spaced frequencies, it was found possible to separate the front
edge contribution from that of the rear edge and traveling waves, and so choose
the impedance tc minimize each, thereby assuring a broadband performance. Cross
section reductions of more than 20 dB weré achieved. The work has been written
up as a technical report (Senior, 1977) which will be sent for approval of pub-
lication as soon as the drafting of the numerous figures is complete.
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Qur general studies of the impedance boundary condition have also continued
with particular emphasis on its application to bodies having edge and corners.
With some bodies the introduction of a non-zero surface impedance has a profound
effect on the character of the solution of the scattering problem, and a case in
point is a plane wave at skew incidence on an impedance wedge of open angle /2.
If the impedance of either surface of the wedge is zero or if the wave is inci-
dent in a plane perpendicular to the edge, the solution can be obtained using
Maliuzhinets' (1959) method or, more simply, by the method of images, and
consists of four plane waves: the primary and three reflected waves. However,
for skew incidence on a wedge both surfaces of which have non-zero impedances,
these same methods are applicable only if the {anisotropic) impedances satisfy
the compatibility relation of Dybdal et al (1971), and if this condition is not
satisfied, no method is available for the exact solution of the problem.
Nevertheless, it is possible to obtain a solution as a Taylor series in the
impedance n. As shown by Senior (1978), for arbitrary impedances the angular
spectrum is no longer discrete, and the solution contains an edge wave whose
amplitude is 0(n2) and whose form is similar to that of the Kottler edge wave
associated with a 'black' half plane.

In the area of lTow frequency scattering we have continued our numerical and
analytical investigations of the general polarizability tensor i(r). Numerical
values of the tensor elements have been obtained for rectangular dielectric
particles (Herrick and Senior, 1977) and the mathematical formulation has now
been applied to hexagonal crystals as well. As in the case of rectangular
particles, the tensor is diagonal and the integral equations which must be
solved to determine the tensor elements are singular only along the edges of
the crystal. This simplifies the numerical solution of the integral equations
by the moment method and again it is found that the kernels of the equations
can be integrated analytically over each sampling cell. A computer program has
been written to compute i(T) for a hexagonal crystal for arbitrary values of
t and the ratio of the axial length to the cross section. However, analysis of
the numerical results is not yet complete. In order to compute the tensor
elements for lossy dielectric materials, modified programs have been written
which allow complex values of .
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In addition to the numerical work, several aspects of the mathematical
formulation have been examined. The symmetry relations which were assumed
among the potential functions (see for example (11) of Herrick and Senior, 1977)
have now been proved analytically. It can be shown that the solutions of the
integral equations, i.e., the potentials on the surface of the body, are odd
(even) functions of the coordinate Xj if the inhomogeneous term is an odd (even)
function of X4 and the body is symmetric about the plane x§ = 0. We have also
proved that, even for a body of arbitrary shape, the potentials given by the
integral equations satisfy the required zero induced charge condition. In the
case of a symmetric body, such a proof can easily be constructed using the
symmetry of the potentials.

Grant-Suggorted publications

D.F. Herrick and T.8.A.Senior (1977), "“Low frequency scattering by rectang-
ular dielectric particles", Appl. Phys. 13, 175-183.

T.8.A. Senior and H. weil (1977), “Electromagnetic scattering and absor-
ption by thin-walled dielectric cylinders with application to ice
crystals", Appl. Opt. 16, 2979-2985.

T.8.A. Senior (1978), “Skew incidence on a right-angied impedance wedge",
accepted for publication in Radio Science; preprint enclosed.

T.B.A. Senior (1977), “"Analyses pertaining to the reduction of non-specular
scattering”, University of Michigan Radiation Laboratory Report No.
015224-1-T.

personnel
The Grant has provided partial salary support of the project director, @

graduate student (Mr. D.F. Herrick, whose work on low frequency scattering will
form his Ph.D. thesis), and two part-time programmers.
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SKEW INCIDENCE ON A RIGHT-ANGLED IMPEDANCE WEDGE

T.B.A. Senior
Radiation Laboratory
The University of Michigan
Ann Arbor, Michigan 48109

ABSTRACT

A problem which is relevant to propagation in a rectangular waveguide with
imperfectly conducting walls is a plane wave at skew incidence on a right-angled
wedge whose surfaces have non-zero impedances either scalar or tensor. The
solution is obtained as a power series in the impedance n through terms O(nz).
Its properties are discussed and it is shown that unless an impedance compati-
bility relation is satisfied the solution contains an edge wave whose amplitude

2

is proportional to n~ and whose form is similar to the wave emanating from the

edge of a 'black' half plane.
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INTRODUCTION

In the analysis of scattering problems the impedance boundary condition is
a valuable tool for simulating the effects of surface imperfections in the form
of finite conductivity (Senior, 1959a) or roughness (Senior, 1959b). The effects
are represented via a surface impedance, and the results have proved meaningful
even in the case of bodies having corners and edges. For some geometries the
scattering problem can now be solved using only a trivial extension of the method
applicable to the perfectly conducting {smooth) surface, but with others the
introduction of a non-zero impedance has a profound effect on the analysis and
the character of the solution itself. An example of the latter type is a plane

wave at skew incidence on an impedance wedge of open angle n/2.

If the impedance of either surface of the wedge is zero or if the wave is
incident in a plane perpendicular to the edge, the solution can be obtained
using Maliuzhinets' (1959) method or, more simply, by the method of images,
and consists of four plane waves: the primary and three reflected waves. How-
ever, for skew incidence on a wedge both surfaces of which have non-zero im-
pedances, these same methods are applicable only if the (anisotropic) impedances
satisfy the compatibility relation of Dybdal et al (1971), and if this condition
is not satisfied, no method is available for the exact solution of the problem.
Nevertheless, it is possible to obtain a solution as a Taylor series in the
impedance n and this is determined to O(nz). For arbitrary impedances the
angular spectrum is no longer discrete and the solution contains an edge wave
similar to that obtained by Kottler (1923) in his analysis of diffraction by a
'black' half plane. The results are relevant to propagation in a rectangular

waveguide having two adjacent walls imperfectly conducting.
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FORMULATION

In terms of the Cartesian coordinates (x, y, z) the equations of the two
faces of the wedge are y = 0, x > 0 and x = 0, y > 0 (see Figure 1). At each
face the impedance boundary condition

-~

*n

30

E-(n-En=z2 H

is a unit vector outward normal, Z is the intrinsic impedance

=0

is imposed, where

of free space and n is an anisotropic (tensor) normalized impedance. Ony = 0

aAn

a = n xx + o 2z

and the boundary conditions are therefore

(1)

Ex =m ZH, g T % !
whereas on x = 0
g 39+ ng 32
giving
Ey il Y4 Hz 2 Ez =g i Hy . (2)

The incident field is a plane wave of arbitrary polarization incident in

a direction making an angle g with the negative z axis, with propagation vector

k=-k (x cos « cOS g + 9 sin o cos g + z sin g)

J
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where a time factor e wt has been assumed. Since the surfaces are independent

-ikzsing

of z, the total field will depend on z only through the factor e , and
can be expressed in terms of the single component Hertz vectors
B 20 dx, O, i e ) TS
as
PRiene. T s S e
Ex ih e + ik 3w VA Hx ih X ik 3y
ST U _ aV sl v Rl
E.y ih 2y ik T VA Hy ih 3y ik X *
e e
EZ o L) 74 Hz x U
U and V satisfy the scalar wave equation
2 2
-32"*'"3_2”2 g 0 (3)
X ay v
and
h =k sin g, A=k cos g
implying
he + Az = k2.
The boundary conditions on U and V are then
. 2 2 M.l Xsk F
b3 [kay+in]AJV, b 3 [k3y+n2A]U (4)
au b) 2 oV - 2
— = . — — = — e —
h ay [k g ing X ] h - [k TR A ) U (5)

ony =0 and x = 0 respectively, and serve to couple U and V unless h = 0

(incidence in a plane perpendicular to the edge), np = ng =0or m gt~

4
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To specify the incident field we choose

ul = A oA (xc + ys) : vi = g e-ir(xc + ys) (6)

where a factor e'i(hz + ut) has been suppressed. A and B are arbitrary con-

stants and ¢ = ¢cos o, S = sin a. Since a plane wave cannot propagate parallel
tc the surfaces, it is necessary to assume that ¢, s > 0 implying 0 < a < /2,
and A # 0. The task is to find the total (incident plus scattered) fields in

accordance with (6) and the boundary conditions (4) and (5).

PLANE WAVE SOLUTION

We first seek a plane wave solution in the form

Y= A e-ix(xc *ys) . A, o~ Talxc - ys} A, giilxe - ys) A, oir(xe + ys)

(7)

y = § g TAkde * yo} o B, o~ ialxe - ys) | B, oirlxe - ys) | 8, cir(xc + ys)

(8)
as suggested by the image method. The last three terms in each of (7) and (8)
constitute the scattered field, and the unknown amplitudes Ai and Bi’ ) s R S
must be chosen to satisfy the boundary conditions (4) and (5). From the con-

ditions ony = 0

he (A + A;) = (ks = an;) B = (ks + an;) B, (9)

hc (A, + Az) = - (ks - any) B, + (ks + xny) By (10)

hc (B + By) = - (ks - A/ny) A + (ks + A/ny) A (1)

he (B, + By) = (ks = A/ny) Ay = (ks + A/n,) Ay . (12)
5
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Similarly, from the conditions on x = 0
hs (A + Az) = - (kc - An3) B + (kc + An3) B, (13)
hs (A + Aj) = (kc - Ang) By - (ke + An,) B, (14)
hs (B + By) = (kc - 3/ng) A - (ke + A/n,) A, (15)
hs (B, + 83) = - (k¢ - A/n4) Ay + (ke + x/n4) Ay (16)

yielding a total of 8 equations for the 6 unknowns A; and B,. From (9) and

(11) A] and B] can be expressed in terms of A and B:

My = - {F - 2ks (ks + An])} A + 2 hksc B (17)
rBy = - 2 hksc A - {r -2ks (ks + A/nz)} B (18)

where
r=h?c+ (ks + an) (ks + a/n,) (19)

In addition, from (13) and (15)

r A2 = - {r' - 2kc (kc + An3)} A - 2 hksc B (20)
r' B, =2 hksc A - (r' - 2ke (kc + A/n,)} B (21)
where
g N
r' = h% 5% + (ke + ang)(ke + Mny) (22)

completing the specification of all the amplitudes save A3 and 83.

From (10) and (12), however, A3 and B3 can be expressed in terms of

A, and BZ’ and using then (20) and (21), we have
it Ay = [ - 2ks (ks + anp)HI' - 2ke (ke + Ang)) - 4 hAKZs%cZ ]

+ 2 hksc[ T - 2ks (ks + Ang) + T' - 2ke (ke + A/ng) JB (23)

6
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Ir' By = - 2 hksc [T - 2ks (ks + A/n,) + T' - 2kc (ke + An3):]A

3

#[(r - 2ks (ks + A/n,)HTI' - 2ke (ke + A/n,)} - & h2k%s2c? .
2 4

(24)
Also, from (14) and (16) with (17) and (18)

It Ay = [(7 - 2ks (ks + ang)HI' = 2ke (ke + Ang)} - 4 h2ks%c?
- 2 hksc [T - 2ks (ks * A/ny) + I' - 2ke (ke + Ang) B (25)
IT' By = 2 hksc [T - 2ks (ks + Ang) + T* - 2ke (ke + A/n,) JA

o+

[r - 2ks (ks + M/ny) HT' - 2ke (ke + A/ng)} - 4 h2k2s2c2 s

(26)
and the results are not necessarily equivalent. Taking first the expressions

(23) and (25) for rr' A, the coefficients of A are identical but those of

3’
B can be written as
S )
- 2 hksc Ekx {s (n] - 1/n2) o - (n3 - I/n4)}$x (“2 + - -1 ]
(27)
with the upper and lower signs for (23) and (25) respectively. Since

A, S, ¢ # 0, the coefficients are the same if and only if h = 0 corresponding

to incidence in a plane perpendicular to the edge, or
- =i w |8 g, (28)

Similarly, in the expressions (24) and (26) for rr' B3, the coefficients of
B are identical but those of A are now given by (27), leading again to the
requirement that (28) be satisfied to make them the same. Equation (28) is

7




the impedance compatibility relation obtained by Dybdal et al (1971) as the
condition for the existence of discrete modes in a rectangular waveguide whose

opposite walls have the same anisotropic impedances. It is equivalent to
E-H=0

at the edge, and if it is satisfied

rr Ay = [0 - 2ks (ks + an)HI' - Zke (ke + Ang)} - 4 hAkZsZc? ]a
- 2nk% A sc {s (ng = 1/ny) - ¢ (ng = 1/n,)} B (29)
e 2
T’ By = - 2hk” X sc {s (n] - l/nz) -c (n3 - 1/n4)} A

-+

(30)
The expressions (7) and (8) for U and V then constitute a valid solution with
the amplitudes Ai and B> i=1, 2, 3, defined by (17), (18), (20), (21), (29)
and (30). Since U and V and, hence, Ez and HZ are non-zero at the edge, the
components of the electric and magnetic currents perpendicular to the edge are
continuous from one face to the other, but as a result of the boundary con-
ditions the component of the electric current parallel to the edge is discon-
tinuous unless Ny = Ny and the same component of the magnetic current is

discontinuous unless n = n3-

Our final remarks are for the case when the impedances are small. If

ng = eqn i=1,2,3,4

[r - 2ks (ks + A/ )" - 2ke (ke + A/ny)} - 4 h2kPs%c? JB.

i




where the e; are of order unity and n << 1, the discrepancies between (23)
and (25) and (24) and (26) are O(nz). It follows that to O(n) our plane wave
solution is valid regardless of the compatibility relation (28), and it is
now of interest to consider the form taken by the next higher order term for

small but arbitrary impedances.

SMALL IMPEDANCE SOLUTION

To obtain a solution which holds regardless of the relation (28), we

assume the following series expansions for U and V:

S =1 6y, Vxy) = Lty (xy) (1)
m=0 m=0

On substituting into the boundary conditions (4) and (5) and equating co-

efficients of like powers of n, we find

v av v av
m | 2 . < m-1 m-1
hT('-k—a—y--1e]X Vm_] g K Um--ez[k 3y +,h ax}
(y =0)
U v au av
m sl g 2 - ™ m-1 m-1
i nall g B N Rt E AN = Gy [k w " dy ]
/
(x = 0)
for m > 0 with U_,, V_] = 0, and these can be expressed as
f(L)(x) y=0,x2>0
u (x, y) = (32)
5 (2)
P x=0,y>0

ot - v




9(,],,)(x) y=0,x2>0
2 . 33
an 'm (x5 y) (2) (33)
g, (¥) x=0,y2>0
where n is the outward normal and
fes 1 W ¥y .
| R ) m-1 m-1
£ ix) = . k e b~ : (34)
\ y=0
e S - .
(2) e m-1 _ m-1
A2 x=0
( 2 2 )
U
i ) RS 4 2 9. Yp ? Ypei
gt (x) 2 -—~gle; A V1 ~eyh - e, kh (36)
m klz ‘ 1 m-1 2 ax2 2 axay |
LB
( 2 2 .
- v 3 U
1 R 4 a9 Vg m-1
g'(y) = - € X Vo 3 =gy W =oemus o g, KN . (37)
m a2 ' TS i 4 iy
x =0

The task has now been reduced to the solution of separate boundary value

problems for Um and Vm'

Given a scalar field y(x, y) satisfying the wave equation (3), the field

at any point inside and on a closed contour L can be written as

vix, y) = Jl [w %%T-- G —3$ ] ds' (38)

an

where G is a two-dimensional Green's function. In the case ¢ = Um it is

convenient to choose G = GS:

G = %{H(l)(m]) - H(;)(ARZ) - H(;)(AR3) + H(;)(AR4)}
10
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with
1/2
Ry, 5 ={(x - x’)2 +(y 3 y')z}

1/2
y')z}

is the Hankel function of the first kind of order zero, so that

o
w
R

H
~~ \
x
+
b3
~—
+
_—
<
+1

(1)
where H M
GS vanishes on the surfaces x = 0 and y = 0. On applying (38) to the region
bounded by the lines y = 0 (x > 0), x = 0 (y > 0) and a quarter circle at
infinity, and imposing the boundary conditions (34) and (35), we have

' (2} ;s 2%
ax + [y o
y|=0 o

dy'
x'=0

" 0 . 3G
Uy (s ) = [y 22

o]

since the quarter circle yields no contribution. Hence

U, (x, y) =

m

- %;’;(])(x') 3§-H(;)[A/fx - x')2 + y?] - 53 H(;)[A /{x + x'jz + y2 dx'

[o]

- %;’;(i)(y') =2 H(1)[A (y - y')zg; xZ] -2 H(l)[x Ay + y')% + % dy'

X (o} X

o

from which U, can be computed knowing f(;)(x) and f(g)(y).
For the partial field Vm the appropriate choice of G is G = Gh where
« 1 lu(V) (1) (1) (1)
Gy, = Z'{} o (ARy) + HY T(R,) + H o (AR3) + HY Z(XR,) s

and using this and proceeding in an analogous manner to the above, we find

N
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Vo (x5 ) =

dx'’

)
Jor

. K )
N e T e

- 'fg(g.)()") H(;)[A(fy- y') + xz] + H(L)[x/(y +y ) s XYJ

(o]

[aS T
o

(40)

which specifies V_ in terms of g(;)(x) and g(s)(y).

The incident plane wave is given by (6), and since the boundary conditions

on the zero order fields are

0 = =
Uo g 0 ony =0, x>0
3V,
Uo ” —5; =0 onx =0,y >0

it follows immediately that

U, (x, y) = Ace-i)\(xc + ys) e-ix(xc - ys) _ eix(xc - ¥s), ei;\(xc + ys)}
(41)
v, (x, y) = Bce-ix(xc +ys) , ialxe - ys) . Jhalxe - ys) | Jalxe + ys)) .

(42)
We can now determine the boundary values for the first order fields. From
(34) and (35) withm =1,

4ic
f(:)(x) £33 7_3. (ks A + hc B) sin Axc ,

4i¢, '
f(f)(y) it —>‘-—4‘ (kc A - hs B) sin ays ,

12
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and when substituted into (39), we have (see A.3)

2e L )
U] (X, .Y) - —A_z' (kS A + hc B) (eU(xc » yS) - e"'A(XC = ys)}

2 : .
- T4 (kc A - hs B) {e”"‘c tys) _ o Talxe - Ys)} : (43)

Similarly, for V] -

9(})(x) i ‘—‘%Gz khsc A + (g 22+ € h?c?) B} cos AXC ,
(2)(y) o 5,‘(—{54 khsc A - (e4 2+ N hs?) B} oS AYS

and when substituted into (40), the result is (see A.5)

LR N 2 ir(xc +ys) -u(xc - ys)
v] (xf )’) --kXS {2 khSCA+ (E] A +62h B}{

-8 € khsc A - (83 )‘2 + + hZSZ) B}Gix(xc + ys) + e‘ix(xc - ys)} :

i kxc
(44)

These serve to specify the boundary values for the second order fields.
From (34) and (35) withm = 2,
4ie2

=
k_x?; {kgzs (k - xzcz) A + hc [e] AZ * ey (k2 - Azcz)] B} sin A XcC

4 -
—kz {54 ksc A + h (53 - 5452) B} ' MXC s

415
A

+

2 (y)

gk {kc4c (k - A s ) A - hs [53 x + 24(k -2 sz)] B}sm AYS
c

de,
T ksc A-h (e] - ;zcz) B} ehyS §

13
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giving
Uy (x, y) =

2
- —E-%——{kezs (k2 - 3%2) A + he [eg A% + ¢, (k2 - 22c2)] B}{”("C +ys)

ki“s
-n(xc-ys)} ——Z——{kec(k -AsZ)A-hs [e G te, (k - sz)]B}

'A + -A 2 €
{e'l (XC _YS) 3 e1 (XC .VS)}+ _'_(gg4 ksc A + h (63 = e452) B} J] (x’ ¥; 0.)

454 2 T
4 = ezkscA-h(e]-szc)B Jy (¥s x5 5 - a)

where the function J] is defined in the Appendix. As shown there, however,

e1x(xc +ys) _

dy ly, x5 5 - a) = J; (% y5 @),

and U2 can therefore be written as
Uy (x, y) =

2¢
2
—'2— ke,s (x® - 2% 2) A+ he e, A + ez(k % AZCZ)] B}{H(XC +ys)

4 3 2¢
-8 ix(xc ys{} + ;;%z‘{}g4c (k2 S ) A - hs [63 AZ tey (k - X )] é}

{!ix(xc +ys) _ ei;\(xc - ys)} 454{ kc A = B (el - ey 2) B} ix(xc + ys)

4h
+ r (5154 + 5283 - 5254) B J] (xv ys 0) . (45)
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Similarly

43 2 2 2.2 2
;?;;-{}2 khsc [e] AT ey (k - A c )] A +[(e x te h“c)" + (52 khsc)“] é}

* €CO0S A XC

2

i\
- i%—{}4 khsc (e] - ezcz) A -[(e3 - 5452)(81 A" # €5 hZCZ) * e k252] é}

_?—— khsc [e tey (k - 52)] A - [(e A * ey h s ) & (e khsc) ] é}
© cos A ys
+ f%i €y khsc (63 - 5452)A + [(s3 - 6452)(€] Az + € hZCZ) + €14 kZSZ] é}
eix -

On substituting these into (40) and using (A.4), (A.12), (A.14) and (A.15),
we find

VZ (x, y) =

{ez khsc [e] 12 +e, (k2 -2 cz)] A+ [(e] A2 + €, h c ) + (’:2 khSC)?‘] B}

? {}1A(xc +ys) a e-ix(xc - ys):}

15




waveguide having two adjacent walls imperfectly conducting.

2

% m{e4 khsc [, e €4 % - 2%2)] A - (e, 22+ ey h2s2)2 + (e, khsc)?] e"r
: {}ix(xc +ys) 4 oirlxe - ys{}

2
+ ;75—-{}2 khsc (53 - 5452) A+ [(e3 - 5452)(51 A

i ) h2c2) * gy kzsz] B}

b eiA(xc + ys)

- 4Th (e‘e4+ezs3 -5254) A Jz (x, y; a) (46)
with J2 defined in the Appendix.
Since A = B = 0 implies a null solution, the last term in each of (45) and

(46) vanishes only if the impedance compatibility relation (28) is satisfied.

U2 and V2 then consist of three plane wave contributions, and the resulting

expressions for
U=U +nU, +nlU VeV +nV +n2y ‘
T 2° G B S

are identical to the expansions through terms O(nz) of the solution derived in
the previous section. If desired, higher order terms can also be obtained, and
involve only the plane waves already present in U2 and VZ' If (28) is not
satisfied, however, the character of the solution changes considerably. U2

and V2 now contain terms proportional to J] and J2 respectively, and it is of

interest to examine the solution in this more general case.

DISCUSSION

The functions J1 (x, y; a) and J2 (x, y; a) satisfy respectively the

integral equations

16




"

36,
T {x. ¥l ff (x's ') 5=7 ds'

[}
and

g (x, y) =-th52—.g ixt, ¥} ds"

L
where & is the contour consisting of the straight line segments y = 0, x > 0

and x = 0, y > 0. Each can be expressed (see Appendix) in terms of the function

aEal sin ¢ itcosh t
Flesdien _’. Cosht +cos ¢ °© i (47)

which occurs in Kottler's (1923) solution for the diffraction of a plane wave
by a perfectly 'black' half plane. The integral is absolutely convergent if
Im. t >0 and -m <y < w, and has been discussed at length by Watson (1938),
Copson and Ferrar (1938) and Erdélyi (1938a, b). It is similar to the Fresnel
integral and can be expanded in a series of 'cut' Hankel functions (Copson and

Ferrar, 1938). In addition,

v

Fle ylng " "’{% - sin wa(()”(t) e't °°S“’dt} (48)

o}
(Erdélyi, 1938a), constituting a finite integral representation, but no analytic

evaluation of the integral has yet been achieved. For t >> 1 the stationary

phase approximation to (47) is,
« 1 7 & it % alk) ]
F(t, v /5 8 tan 3

and for t << 1 (48) shows
F(T"’)’%"’O(T]Ogt).

17
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From the expressions (A.9) and (A.13) for J] and J2 respectively in terms

of F(x , y), it follows immediately that on the line segment y = 0, x >0

ad
’ — = i) sin ¢

ix X COS g
=g
ay

J eix X COosS
1

whereas on the segment x = 0, y > 0

adJ
oy =0 €
1 5 0.

J; and J2 are also closely related and if 9 (xs ¥3 a) = K (6 , a) where g is
the cylindrical polar coordinate, Jp (xs y5 ) = K (n/2 - a, #/2 - 8). For

Ao >> 1 and s bounded away from o

: - oi2o cos (a - 8) vabvde ¥l ¢ of8) _ siu e
Jy (x, y; a) ~ e H (a - 0) e cos 29 - cOs 2a

: . ,ixp cos (a - 8) /2 i (xo + n/4) sin 2g
J2 (x’ y’ !l) e H ((1 o e) % “Xp e COS 26 - COS 20

where H is the unit step function, showing that at large distances from the

edge, both functions have the appearance of an edge wave. For Ap << 1, however,
J] (xo Y (l) -] '29/'"‘ ’ Jz (xv .Y; G)—Zalﬂ-

The partial field V2 is therefore continuous from one surface of the wedge to

the other, but U2 has a finite jump discontinuity.

' Partial fields Um and Vm of higher order than the second can be obtained
by the same method used to determine U2 and VZ' and these turn out io be singular

at the edge, with the order of the singularity increasing with m. They also

18




involve functions which, though similar to J1 and JZ’ become more complicated
as m increases, and for this reason it does not seem likely that the field
expansions can be summed to arrive at an exact closed form solution of the
wedge problem. Nevertheless, it is evident that like the partial fields Um

and V for m > 2, the exact solution must have a continuous angular spectrum.
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APPENDIX: SOME INTEGRAL EVALUATIONS

There are two types of integral that arise in connection with the partial
fields U] and V]. The first is

o

I = ./;in (x x* e) {%g-H(;)(AVf; - x')2 + y2) - 33 H(;)(A/?x + x')2 + yz):}dx'

X

(A.1)
which can be written as

@

I =fs1'n ( x' ¢) S%H(l)()\/x - x ) + 9y dx.

-0

We now insert the Fourier integral representation

g ; PO 2
H(;)()\/(;-x')2+y2) =lfe1“’ s Bl L I

2 = ; (A.2)
-0 /)\ -
valid for y > 0, where X is assumed to have a small positive imaginary part.
On reversing the order of integration and using the fact that
J;-] (w ¥ Ac) x dx' = 27 6 (w ¥ AC)
where § is the Dirac delta function, we have
Iy = eix ¥S (e'h X€ _g-1r XCy (A.3)

The second integral is

(]

I, = Asfcos (» x' c){H(l)(A%x - x')% + y%) 4 H(;)(A/(x ‘ x')2 + yz}dx'

(A.4)
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and in a similar manner it can be shown that

p g _.A
[ owigl® ¥ (e‘A xc , o~} Xcy.

2 (A.5)

For integrals that differ from the above in having only single exponentials

in the integrands the evaluation is more difficult. Consider

J] (X, ys (1) =

- -;—fe“‘ X' COS“{% H(l)(k»/(x - x')2 + y°) - % H(;)(x/(x + x')2 + yz)}dx'

(A.6)

where 0 < a < n. If we again insert the Fourier integral representation (A.2),

the x' integration can be carried out immediately to give

: K : .
&l (A cos o 7 w) X gl i
ACOS aa Fw
C

and hence

=3 |-|-

Jy (x, y5 a) = - 2
1 wz - AZ COS2 a

.’. eimx + iy /(2 - w2 do,

We now make the substitution w = A cos ¥ and write

X =pcos 6, Yy =p sin 8
with 0 < 6 < n/2, so that

gy (x, ys a)=-1f 5;"55052 elto cos (¥ - 0) ,x
5 v cos™ ¥ - cos” o

where C is the path shown in Figure A-1. The stationary phase point is ¥ = ¢ ,

and in a deformation of the path into the stationary phase contour S(p) the pole
22




at ¥ = a is captured if 8 < a. Hence

J (X, y5 a) = eire cos (a - 8) fx = 8} = % sin (¥ +8) cos (& + 8)

2 2
$(0) cos” (¥ + 6) - cos” a

x eiko COSK d¥ (A.7)

where H denotes the unit step function.

The path S(0) is symmetrical about the origin of the ¥ plane, and the method
employed by Clemmow (1951, p. 293) can now be used to reduce the integral to a
more elementary form. Replacing ¥ by -¥ and then adding the resulting integral

to that in (A.7), we find after some manipulation

3 _ ,ixp cos (a - @) ]_f sin (8 + a)
J] (x, y; a) = e H(a-8)+ 4n {;os ¥ - cos (6 + a)
S(0

sin (8 + a) sin (8 - a) sin (0 - a) }

T cos ¥ +cos (8 +a) cosS ¥+t cos (8 -a) * Cos § - cos (6 - a)

. gihp €OSE 4o (A.8)

Each cf these integrals is only a special case of the Kottler function F (t, v)

defined in (47). A simple change in the variable of integration shows

sin o ixp cos ¥ dy
cos § + cos ¢ i

(0)

and with the restriction - « < y < n, the first three integrals in (A.8) cor-

F (o, 9) = %;

respond to the identifications y =7 -6 - a, 6 + a and 6 - o respectively.
For the fourth integral ¢y = * n - ¢ + « according as 6 % a respectively, and

since (48) implies

F (Kp s W =0+ a) - F(Ao, -1 -0+ G) = eikp cos (a = 9)’

23




it follows that

J] (x, y; a) =

F(p ,n-08-a)-F(xp,0+a)-F(xp,0-a)+F (hp,nm-06+a).
(A.9)
On interchanging x and y in (A.6) and, at the same time, replacing a by

n/2 - a, we have

3y (ys X3 7/2 - o) =

- %J‘:“y' Si““{a—f(- KD OAy - v+ o) - 2 Doy + 0?2+ xz& dy'

=F(x,0+a)-F(xp,m-08-a)-F(xp,a-06)+F (ro,n+6-a)

(A.10)
and hence, from (48),
J] (x, y; a) + J] (y, x; /2 = a) = e'i)‘p cos (a - 0) 3 (A.11)
The only integral still to be evaluated is the analogue of (A.4) with the

cosine factor replaced by a single exponential. If

Jy (%, y5 a) =

A sin afem- c05a@(;)(hf(x L SONG| TNV ety ,2)} ix',
o (A.12)
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insertion of the Fourier integral representation of the Hankel function gives

Jy (%, y5 a) =
o ixzf sin a coS «a e1'mx # iy/Az - wZ __dw
. wz - Az cos2 a 2 2
5) AT = w
- 212 cos (a - 8) ¥ sin o cos o ixp cos¥
5(0) €08 8) - cos” a

and by a process similar to that used above, we find
Jz (xa y; a) =

eixp cos (a -9) e

4 sin (g + q) sin (e + o)

=0l 4r .I- {;os § -cos (6 +a) cos¥ +cos (s *a)
S(0) _

sin (8 - a) 5 sin (5 - a) eixp cos ¥ dy
cos§ +cos (6 - a) cos¥ - cos (6 - a) .
Hence
Jy (X, y; a) =

-F(d,m-06-0a)+F (xp,8+a)-F (Ao, 08-a)+F (kp, m-6+a).
(A.13)

With 8 and o replaced by n/2 - 6 and 7/2 - o respectively,

JZ (y, x; n/2 = a) =

A cgs aul.e1ky' sin m{é(l)(xyfy % y-)z + x?) + H(;)(A/fy + y')2 +Xzi}dY'

o

=-F(w,0+a)+F(dp,n-06-0a)-F(xp,a-0)+F (Ao, m+0-a),

25 (A.14)




and (48) then implies

J2 (x, y; a) + J2 (y, x; /2 - a) =

26

eixp cos (a - 0)

(A.15)

o

e @




FIGURE CAPTIONS

Figure 1: The geometry.

Figure A-1: Path of integration in complex ¥ plane.
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